Mar 252017
 

So, there’s been a bit of discussion lately about our communications infrastructure. I’ve been doing quite a bit of thinking about the topic.

The situation today

Here in Australia, a lot of people are being moved over to the National Broadband Network… with the analogue fixed line phone (if it hasn’t disappeared already) being replaced with a digital service.

For many, their cellular “mobile” phone is their only means of contact. More than the over-glorified two-way radios that was pre-cellular car phones used by the social elites in the early 70s, or the slightly more sophisticated and tennis-elbow inducing AMPS hand-held mobile phones that we saw in the 80s, mobile phones today are truly versatile and powerful hand-held computers.

In fact, they are more powerful than the teen-aged computer I am typing this on. (And yes, I have upgraded it; 1GB RAM, 250GB mSATA SSD, Linux kernel 4.0… this 2GHz P4 still runs, and yes I’ll update that kernel in a moment. Now, how’s that iPhone 3G going, still running well?)

All of these devices are able to provide data communications throughput in the order of millions of bits per second, and outside of emergencies, are generally, very reliable.

It is easy to forget just how much needs to work properly in order for you to receive that funny cat picture.

Mobile networks

One thing that is not clear about the NBN, is what happens when the power is lost. The electricity grid is not infallible, and requires regular maintenance, so while reliability is good, it is not guaranteed.

For FTTP users, battery backup is an optional extra. If you haven’t opted in, then your “land line” goes down when the power goes out.

This is not a fact that people think about. Most will say, “that’s fine, I’ve got my mobile” … but do you? The typical mobile phone cell tower has several hours battery back-up, and can be overwhelmed by traffic even in non-emergencies.They are fundamentally engineered to a cost, thus compromises are made on how long they can run without back-up power, and how much call capacity they carry.

In the 2008 storms that hit The Gap, I had no mobile telephone coverage for 2 days. My Nokia 3310 would occasionally pick up a signal from a tower in a neighbouring suburb such as Keperra, Red Hill or Bardon, and would thus occasionally receive the odd text message… but rarely could muster the effective radiated power to be able to reply back or make calls. (Yes, and Nokia did tell me that internal antennas surpassed the need for external ones. A 850MHz yagi might’ve worked!)

Emergency Services

Now, you tell yourself, “Well, the emergency services have their own radios…”, and this is correct. They do have their own radio networks. They too are generally quite reliable. They have their problems. The Emergency Alerting System employed in Victoria was having capacity problems as far back as 2006 (emphasis mine):

A high-priority project under the Statewide Integrated Public Safety Communications Strategy was establishing a reliable statewide paging system; the emergency alerting system. The EAS became operational in 2006 at a cost of $212 million. It provides coverage to about 96 per cent of Victoria through more than 220 remote transmitter sites. The system is managed by the Emergency Services Telecommunications Agency on behalf of the State and is used by the CFA, VICSES and Ambulance Victoria (rural) to alert approximately 37,400 personnel, mostly volunteers, to an incident. It has recently been extended to a small number of DSE and MFB staff.

Under the EAS there are three levels of message priority: emergency, non-emergency, and administrative. Within each category the system sends messages on a first-in, first-out basis. This means queued emergency messages are sent before any other message type and non-emergency messages have priority over administrative messages.

A problem with the transmission speed and coverage of messages was identified in 2006. The CFA expressed concern that areas already experiencing marginal coverage would suffer additional message loss when the system reached its limits during peak events.

To ensure statewide coverage for all pagers, in November 2006 EAS users decided to restrict transmission speed and respond to the capacity problems by upgrading the system. An additional problem with the EAS was caused by linking. The EAS can be configured to link messages by automatically sending a copy of a message to another pager address. If multiple copies of a message are sent the overall load on the system increases.

By February 2008 linking had increased by 25 per cent.

During the 2008 windstorm in Victoria the EAS was significantly short of delivery targets for non-emergency and administrative messages. The Emergency Services Telecommunications Agency subsequently reviewed how different agencies were using the system, including their message type selection and message linking. It recommended that the agencies establish business rules about the use of linking and processes for authorising and monitoring de-linking.

The planned upgrade was designed to ensure the EAS could cope better with more messages without the use of linking.

The upgrade was delayed several times and rescheduled for February 2009; it had not been rolled out by the time of Black Saturday. Unfortunately this affected the system on that day, after which the upgrade was postponed indefinitely.

I can find mention of this upgrade taking place around 2013. From what I gather, it did eventually happen, but it took a roasting from mother nature to make it happen. The lesson here is that even purpose built networks can fall over, and thus particularly in major incidents, it is prudent to have a back-up plan.

Alternatives

For the lay person, CB radio can be a useful tool for short-range (longer-than-yelling-range) voice communications. UHF CB will cover a few kilometres in urban environments and can achieve quite long distances if good line-of-sight is maintained. They require no apparatus license, and are relatively inexpensive.

It is worth having a couple of cheap ones, a small torch and a packet of AAA batteries (stored separately) in the car or in a bag you take with you. You can’t use them if they’re in a cupboard at home and you’re not there.

The downside with the hand-helds, particularly the low end ones, is effective radiated power. They will have small “rubber ducky” antennas, optimised for size, and will typically have limited transmit power, some can do the 5W limit, but most will be 1W or less.

If you need a bit more grunt, a mobile UHF CB set and magnetic mount antenna could be assembled and fitted to most cars, and will provide 5W transmit power, capable of about 5-10km in good conditions.

HF (27MHz) CB can go further, and with 12W peak envelope power, it is possible to get across town with one, even interstate or overseas when conditions permit. These too, are worth looking at, and many can be had cheaply second-hand. They require a larger antenna however to be effective, and are less common today.

Beware of fakes though… A CB radio must meet “type approval”, just being technically able to transmit in that band doesn’t automatically make it a CB, it must meet all aspects of the Citizens Band Radio Service Class License to be classified a CB.

If it does more than 5W on UHF, it is not a UHF CB. If it mentions a transmit range outside of 476-478MHz, it is not a UHF CB.  Programming it to do UHF channels doesn’t change this.

Similarly, if your HF CB radio can do 26MHz (NZ CB, not Australia), uses FM instead of SSB/AM (UK CB, again not Australia), does more than 12W, or can do 28-30MHz (10m amateur), it doesn’t qualify as being a CB under the class license.

Amateur radio licensing

If you’ve got a good understanding of high-school mathematics and physics, then a Foundation amateur radio license is well within reach.  In fact, I’d strongly recommend it for anyone doing first year Electrical Engineering … as it will give you a good practical grounding in electrical theories.

Doing so, you get to use up to 10W of power (double what UHF CB gives you; 6dB can matter!) and access to four HF, one VHF and one UHF band using analogue voice or hand-keyed Morse code.

You can then use those “CB radios” that sell on eBay/DealExtreme/BangGood/AliExpress…etc, without issue, as being un-modified “commercial off-the-shelf”, they are acceptable for use under the Foundation license.

Beyond Voice: amateur radio digital modes

Now, all good and well being able to get voice traffic across a couple of suburban blocks. In a large-scale disaster, it is often necessary to co-ordinate recovery efforts, which often means listings of inventory and requirements, welfare information, etc, needs to be broadcast.

You can broadcast this by voice over radio… very slowly!

You can put a spreadsheet on a USB stick and drive it there. You can deliver photos that way too. During an emergency event, roads may be in-passable, or they may be congested. If the regular communications channels are down, how does one get such files across town quickly?

Amateur radio requires operators who have undergone training and hold current apparatus licenses, but this service does permit the transmission of digital data (for standard and advanced licensees), with encryption if needed (“intercommunications when participating in emergency services operations or related training exercises”).

Amateur radio is by its nature, experimental. Lots of different mechanisms have been developed through experiment for intercommunication over amateur radio bands using digital techniques.

Morse code

The oldest by far is commonly known as “Morse code”, and while it is slower than voice, it requires simpler transmitting and receiving equipment, and concentrates the transmitted power over a very narrow bandwidth, meaning it can be heard reliably at times when more sophisticated modes cannot. However, not everybody can send or receive it (yours truly included).

I won’t dwell on it here, as there are more practical mechanisms for transmitting lots of data, but have included it here for completeness. I will point out though, due to its simplicity, it has practically no latency, thus it can be faster than SMS.

Radio Teletype

Okay, there are actually quite a few modes that can be described in this manner, and I’ll use this term to refer to the family of modes. Basically, you can think of it as two dumb terminals linked via a radio channel. When you type text into one, that text appears on the other in near real-time. The latency is thus very low, on par with Morse code.

The earliest of these is the RTTY mode, but more modern incarnations of the same idea include PSK31.

These are normally used as-is. With some manual copying and pasting pieces of text at each end, it is possible to encode other forms of data as short runs of text and send files in short hand-crafted “packets”, which are then hand-deconstructed and decoded at the far end.

This can be automated to remove the human error component.

The method is slow, but these radioteletype modes are known for being able to “punch through” poor signal conditions.

When I was studying web design back in 2001, we were instructed to keep all photos below 30kB in size. At the time, dial-up Internet was common, and loading times were a prime consideration.

Thus instead of posting photos like this, we had to shrink them down, like this. Yes, some detail is lost, but it is good enough to get an “idea” of the situation.

The former photo is 2.8MB, the latter is 28kB. Via the above contrived transmission system, it would take about 20 minutes to transmit.

The method would work well for anything that is text, particularly simple spread sheets, which could be converted to Comma Separated Values to strip all but the most essential information, bringing file sizes down into realms that would allow transmission times in the order of 5 minutes. Text also compresses well, thus in some cases, transmission time can be reduced.

To put this into perspective, a drive from The Gap where that photo was taken, into the Brisbane CBD, takes about 20 minutes in non-peak-hour normal circumstances. It can take an hour at peak times. In cases of natural disaster, the roads available to you may be more congested than usual, thus you can expect peak-hour-like trip times.

Radio Faximile and Slow Scan Television

This covers a wide variety of modes, ranging from the ancient like Hellschreiber which has its origins in the German Military back in World War II, various analogue slow-scan television modes through to the modern digital slow-scan television.

This allows the transmission of photos and visual information over radio. Some systems like EasyPAL and its elk (based on HamDRM, a variant of Digital Radio Mondiale) are in fact, general purpose modems for transmitting files, and thus can transmit non-graphical data too.

Transmit times can vary, but the analogue modes take between 30 seconds and two minutes depending on quality. For the HamDRM-based systems, transmit speeds vary between 86Bps up to 795kBps depending on the settings used.

Packet Radio

Packet radio is the concept of implementing packet-switched networks over radio links. There are various forms of this, the most common in amateur radio being PACTOR, WINMOR, the 1200-baud AFSK and 9600-baud FSK and 300-baud AFSK packet modes.

300-baud AFSK is normally used on HF links, and hails from experiments using surplus Bell 103 modems modified to work with radio. Similarly, on VHF and UHF FM radio, experiments were done with surplus Bell 202 modems, giving rise to the 1200-baud AFSK mode.

The 9600-baud FSK mode was the invention of James Miller G3RUH, and was one of the first packet radio modes actually developed by radio amateur operators for use on radio.

These are all general-purpose data modems, and while they can be used for radioteletype applications, they are designed with computer networking in mind.

The feature facilities like automatic repeating of lost messages, and in some cases support forward error correction. PACTOR/WINMOR is actually used with the Winlink radio network which provides email services.

The 300-baud, 1200-baud and 9600-baud versions generally use a networking protocol called AX.25, and by configuring stations with multiple such “terminal node controllers” (modems) connected and appropriate software, a station can operate as a router, relaying traffic received via one radio channel to a station that’s connected via another, or to non-AX.25 stations on Winlink or the Internet.

It is well suited to automatic stations, operating without human intervention.

AX.25 packet and PACTOR I are open standards, the later PACTOR modems are proprietary devices produced by SCS in Germany.

AX.25 packet is capable of transmit speeds between 15Bps (300 baud) and 1kBps (9600 baud). PACTOR varies between 5Bps and 650Bps.

In theory, it is possible to develop new modems for transmitting AX.25, the HamDRM modem used for slow-scan television and the FDMDV modem used in FreeDV being good starting points as both are proven modems with good performance.

These simply require an analogue interface between the computer sound card and radio, and appropriate software.  Such an interface made to link a 1200-baud TNC to a radio could be converted to link to a low-cost USB audio dongle for connection to a computer.

If someone is set up for 1200-baud packet, setting up for these other modes is not difficult.

High speed data

Going beyond standard radios, amateur radio also has some very high-speed data links available. D-Star Digital Data operates on the 23cm microwave band and can potentially transmit files at up to 16KBps, which approaches ADSL-lite speeds. Transceivers such as the Icom ID-1 provide this via an Ethernet interface for direct connection to a computer.

General Electric have a similar offering for industrial applications that operates on various commercial bands, some of which can reach amateur frequencies, thus would be usable on amateur bands. These devices offer transmit speeds up to 8KBps.

A recent experiment by amateurs using off-the-shelf 50mW 433MHz FSK modules and Realtek-based digital TV tuner receivers produced a high-speed speed data link capable of delivering data at up to 14KBps using a wideband (~230kHz) radio channel on the 70cm band.  They used it to send high definition photos from a high-altitude balloon.

The point?

We’ve got a lot of tools at our disposal for getting a message through, and collectively, 140 years of experience at our disposal. In an emergency situation, that means we have a lot of different options, if one doesn’t work, we can try another.

No, a 1200-baud VHF packet link won’t stream 4k HD video, but it has minimal latency and will take less than 20 minutes to transmit a 100kB file over distances of 10km or more.

A 1kB email will be at the other end before you can reach for your car keys.  Further experimentation and development means we can only improve.  Amateur radio is far from obsolete.

Mar 112017
 

So, as promised, the re-design of the charge controller. … now under the the influence of a few glasses of wine, so this should be interesting…

As I mentioned in my last post, it was clear that the old logic just wasn’t playing nice with this controller, and that using this controller to maintain the voltage to the nodes below 13.6V was unrealistic.

The absolute limits I have to work with are 16V and 11.8V.

The 11.8V comes from the combination of regulator voltage drop and ATX PSU power range limits: they don’t operate below about 10.8V, if you add 700mV, you get 11.5V … you want to allow yourself some head room. Plus, cycling the battery that deep does it no good.

As for the 16V limit… this is again a limitation of the LDOs, they don’t operate above 16V. In any case, at 16V, the poor LDOs are dropping over 3V, and if the node is running flat chat, that equates to 15W of power dissipation in the LDO. Again, we want some headroom here.

The Xantrex charger likes pumping ~15.4V in at flat chat, so let’s go 15.7V as our peak.

Those are our “extreme” ranges.

At the lower end, we can’t disconnect the nodes, but something should be visible from the system firmware on the cluster nodes themselves, and we can thus do some proactive load shedding, hibernating virtual instances and preparing nodes for a blackout.

Maybe I can add a small 10Mbps Ethernet module to an AVR that can wake the nodes using WOL packets or IPMI requests. Perhaps we shut down two nodes, since the Ceph cluster will need 2/3 up, and we need at least one compute node.

At the high end, the controller has the ability to disconnect the charger.

So that’s worked out. Now, we really don’t want the battery getting that critically low. Thus the time to bring the charger in will be some voltage above the 11.8V minimum. Maybe about 12V… perhaps a little higher.

We want it at a point that when there’s a high load, there’s time to react before we hit the critical limit.

The charger needs to choose a charging source, switch that on, then wait … after a period check the voltage and see if the situation has improved. If there’s no improvement, then we switch sources and wait a bit longer. Wash, rinse, repeat. When the battery ceases to increase in voltage, we need to see if it’s still in need of a charge, or whether we just call it a day and run off the battery for a bit.

If the battery is around 14.5~15.5V, then that’s probably good enough and we should stop. The charger might decide this for us, and so we should just watch for that: if the battery stops charging, and it is at this higher level, just switch to discharge mode and watch for the battery hitting the low threshold.

Thus we can define four thresholds, subject to experimental adjustment:

Symbol Description Threshold
V_{CH} Critical high voltage 15.7V
V_H High voltage 15.5V
V_L Low voltage 12.0V
V_{CL} Critical low voltage 11.8V

Now, our next problem is the waiting… how long do we wait for the battery to change state? If things are in the critical bands, then we probably want to monitor things very closely, outside of this, we can be more relaxed.

For now, I’ll define two time-out settings… which we’ll use depending on circumstances:

Symbol Description Period
t_{LF} Low-frequency polling period 15 sec
t_{HF} High-frequency polling period 5 sec

In order to track the state, I need to define some variables… we shall describe the charger’s state in terms of the following variables:

Symbol Description Initial value
V_{BL} Last-known battery voltage, set at particular points. 0V
V_{BN} The current battery voltage, as read by the ADC using an interrupt service routine. 0V
t_d Timer delay… a timer used to count down until the next event. t_{HF}
S Charging source, an enumeration:

  • 0: No source selected
  • 1: Main charging source (e.g. solar)
  • 2: Back-up charging source (e.g. mains power)
0

The variable names in the actual code will be a little more verbose and I’ll probably use #defines for the enumeration.

Below is the part-state-machine part-flow-chart diagram that I came up with. It took a few iterations to try and describe this accurately, I was going to use a state machine syntax similar to what my workplace uses, but in the end, found the ye olde flow chart shows it best.

In this diagram, a filled in dot represents the entry point, a dot with an X represents an exit point, and a dot in a circle represents a point where the state machine re-enters the state and waits for the main loop to iterate once more.

You’ll note that for this controller, we only care about one voltage, the battery voltage. That said, the controller will still have temperature monitoring duties, so we still need some logic to switch the ADC channel, throw away dummy samples (as per the datasheet) and manage sample storage. The hardware design does not need to change.

We can use quiescent voltages to detect the presence of a charging source, but we do not need to, as we can just watch the battery voltage rise, or not, to decide whether we need to take further action.

Oct 132016
 

Well, today’s mail had a surprise.  Back about 6 years ago, I was sub-contracted to Jacques Electronics to help them develop some device drivers for their video intercom system.  At the time, they were using TI’s TLV320AIC3204 and system-on-modules based on the Freescale i.MX27 SoC.

No driver existed in the ALSA tree for this particular audio CODEC, and while TI did have one available under NDA, the driver was only licensed for use with a TI OMAP SoC.  I did what just about any developer would do, grabbed the closest-looking existing ALSA SoC driver, ripped it apart and started hacking.  Thus I wound up getting to grips with the I²S infrastructure within the i.MX27 and taming the little beast that is the TLV320AIC3204, producing this patch.

As the code was a derivative work, the code was automatically going to be under the GPLv2 and thus was posted on the ALSA SoC mailing list for others to use.  This would help protect Jacques from any possible GPL infringement regarding the use of that driver.  I was able to do this as it was a clean-room implementation using only material in TI’s data sheet, thus did not contain any intellectual property of my then-employer.

About that time I recall one company using the driver in their IP camera product, the driver itself never made it into the mainline kernel.  About 6 months later, another driver for the TLV320AIC3204 and 3254 did get accepted there, I suspect this too was a clean-room implementation.

Fast forward to late August, I receive an email from Jeremy McDermond on behalf of the Northwest Digital Radio.  They had developed the Universal Digital Radio Controller board for the Raspberry Pi series of computers based around this same CODEC chip.  Interestingly, it was the ‘AIC3204 driver that I developed all that time before that proved to be the code they needed to get the chip working.  The chip in question can be seen up the top-right corner of the board.

Universal Digital Radio Controller

Timely, as there’s a push at the moment within Brisbane Area WICEN Group to investigate possible alternatives to our aging packet radio system and software stack.  These boards, essentially being radio-optimised sound cards, have been used successfully for implementing various digital modes including AX.25 packet, D-Star and could potentially do FreeDV and other digital modes.

So, looks like I’ll be chasing up a supplier for a newer Raspberry Pi board, and seeing what I can do about getting this device talking to the world.

Many thanks to the Northwest Digital Radio company for their generous donation! 🙂

Sep 032016
 

So after a long hiatus, some of it involving some yak shaving (e.g. #Open-source debugWire debugger yes, I’ll get back to that), I managed to get a version of the firmware together for the power controller that seems to be doing what I ask of it.

The means of overcoming the road block was knocking up a very crude (and slow!) UART driver so I could print data out on the serial port. I avoided doing this previously because I didn’t have an easy way to interface to a TTL serial port. Recently though, I bought some FTDI serial cables, one 5V and one 3.3V, so now I had little excuse.

I feel these will give me some valuable insights into tacking the debugWire project.

I was able though, to bit-bang a UART using avr-libc’s _delay_us, and get a respectable 4800 baud serial stream out. This obviously dropped to 300 baud when I had other tasks running, but still, that’s enough to do what I’m after. (Once upon a time, that was considered fast!)

After figuring out where I was going wrong… perhaps I had been sniffing too much solder smoke that day… I re-wrote my firmware, using this UART library as a means of debugging the code. I set up Timer1 to run at 1.2kHz, which meant I could also use it as a baud rate generator for my software UART and upping the baud rate to 1200bps.

Some further work on a breadboard, and I had more-or-less working firmware.

I’ve thrown the code up on GitHub, it’s very much in a raw state, and I might do a second revision of the PCB, since this prototype seems to be more or less on the money now.

Mar 312013
 

Recently I purchased a second hand Kantronics KPC-3 packet TNC. Brisbane Area WICEN make heavy use of packet at one particular event, the International Rally of Queensland, where they use the 1200-baud network to report the scores of rally cars as they progress through each stage.

Now, I’m a newcomer to radio compared to most on the band. I got my license in 2008, and I’ve only had contact with packet for the last two years, and even then, mostly only at a distance.  I had a hand-held that did APRS, and I’ve also done some APRS using soundmodem and Xastir.  Full-blooded AX.25 has taken me some time, and I’m slowly coming to grips with some of it.

One thing I wanted to try and figure out, is how to re-lay traffic from a host connected to the RF world, to a host on a local network.  I knew there was some protocol that did it, but didn’t know what, or how it worked.  Turns out the protocol I was thinking of was AXIP, which basically overlays AX.25 frames directly atop IP.  There’s also a version that encapsulates them in UDP datagrams; AXUDP.

The following are my notes on how I managed to get some routing to happen.

So, my set-up.  I have my FT-897D set up on 145.175MHz FM, the APRS frequency in Australia.  (I did go hunting for BBSes the other night but came up blank, but since APRS uses AX.25 messaging, it’ll be a start.)

To its data port, I have the KPC-3, which connects to my trusty old P4 laptop via good ol’e RS-232 (the real stuff, not pretend USB-RS232, yes the laptop is that old).  This laptop is on my local LAN, with an IP address of 192.168.64.141.

In front of me, is my main workhorse, a MacBook at the address of 192.168.64.140.  Both laptops are booted into Linux, and my target is Xastir.

First thing I had to do was compile the AX.25 kernel modules, and the ax25-tools, ax25-apps.  The userspace tools needed for this are: ax25ipd and kissnetd.

On the RF-facing system

This is the P4 in my case, the one with the TNC. First step is to get the TNC into KISS mode. In the case of Kantronics TNCs, the way to do this is to fire up your terminal emulator and run int kiss followed by reset.

Important note: to get it back, shut down everything using the serial port then run echo -e '\0300\0377\0300' > /dev/ttyS0. This sends the three-byte exit-kiss-mode sequence (0xc0 0xff 0xc0).

Configure /etc/ax25/ax25ipd.conf. Three things you’ll need to set up:

  • mode: should be tnc
  • device: should be whatever your serial device is (more on this later)
  • your default route: this is the host that will receive ALL traffic

In my case, my ax25ipd.conf on the P4 laptop looks like this:

socket ip
mode tnc
device /dev/ttyS0
speed 9600
loglevel 2
broadcast QST-0 NODES-0
# This points to my MacBook; d means default route
route 0 192.168.64.140 d

Once done, we start the ax25ipd service as root, it should fork into the background, and checking with netstat should show it as listening on a raw socket.

On the client machine

Here, we also run a AXIP server, but this time to catch the packets that get flung our way by the other system. We want Xastir to pick up the traffic as it comes in. Two ways of doing this.

One is to configure kissattach to give us a PTY device which we then pass onto ax25ipd, then run Xastir as root and tell it to use the AX.25 stack directly. Gentoo’s Xastir ebuild ships with this feature disabled, so not an option here (unless I hack the ebuild like I did last time).

The AX.25 tools also come with kissnetd: this basically generates several PTYs and links them all together so they all see eachother’s KISS traffic. So ax25ipd will receive packets, pass them to its PTY, which will then get forwarded by kissnetd to the other PTY attached to Xastir.

There is one catch. Unlike in kernels of yore, kernel 2.6 and above (3.x is no exception) do not have statically configured PTY devices. So all the AX.25 docs that say to use /dev/ptyq0 for one end and /dev/ttyqf for the other? Make that /dev/ptmx for one end, and the tool will tell you, what the other end is called. And yes, it’ll change.

Run kissnetd -p 2; the parameter tells it to create two PTYs. The tool will run in the foreground so make a note of what they’re called, then hit CTRL-Z followed by bg to bring it into the background.

vk4msl-mb stuartl # kissnetd -p 2
kissnetd V 1.5 by Frederic RIBLE F1OAT - ATEPRA FPAC/Linux Project

Awaiting client connects on:
/dev/pts/1 /dev/pts/4
^Z
[1]+  Stopped                 kissnetd -p 2
vk4msl-mb stuartl # bg 1

Now, in this example, PTYs 1 and 4 are allocated. I can allocate either one of them to Xastir or ax25ipd, here I’ll use /dev/pts/4 for ax25ipd and the other for Xastir. It is possibly best if you make symlinks to these, and just refer to the symlinks in your software.

# ln -s /dev/pts/4 /dev/kiss-ax25ipd
# ln -s /dev/pts/1 /dev/kiss-xastir

Whilst you’re at it, change the ownership of the one you give to Xastir to your user/group so Xastir doesn’t need to run as root.

Set up /etc/ax25/ax25ipd.conf on the client. Here, I’ve given it a route for all WIDE* traffic to the other host. It might be possible to just use 0 as I did before, I wasn’t sure if that’d create a loop or not.

socket ip
mode tnc
device /dev/kiss-ax25ipd
speed 9600
loglevel 2
broadcast QST-0 NODES-0
# This points to my P4, attached to the TNC; d means default route
route WIDE* 192.168.64.141 d

Now start up ax25ipd and Xastir, you should be able to bring up the interface and see APRS traffic, more over, you should be able to hit Transmit and see the TNC broadcast your packets.

Some stations visible direct via RF

Some stations visible direct via RF (click to enlarge)

Jun 082011
 

Well… has anyone noticed anything different about the ‘net?

stuartl@atomos ~ $ host www.google.com.au
www.google.com.au is an alias for www.google.com.
www.google.com is an alias for www.l.google.com.
www.l.google.com has address 74.125.237.52
www.l.google.com has address 74.125.237.48
www.l.google.com has address 74.125.237.49
www.l.google.com has address 74.125.237.50
www.l.google.com has address 74.125.237.51
www.l.google.com has IPv6 address 2404:6800:4006:802::1011

I knew World IPv6 day was coming up, but it seems it snuck up on me and I barely noticed. Likely a testament to the fact we run a dual-stack network here, and so everything magically Just Worked™ as it should. Indeed, a lot of websites are now dual-stack, as is much of the gentoo.org infrastructure, Google (as seen above), FaceBook, and numerous other sites.

Sadly, a lot of ISPs here in Australia did the demented ostrich act when it came to IPv6. I wonder how many technical support calls they received, with users complaining about websites being slow to load up or failing to connect.

iTel, formerly “Global Info-Links”, now calling themselves “South East Community Telco“… were one of the masses that drove their RFC791-only heads in the sand and pretended that the entire Internet can be compressed into 32-bits of address space. We’ve been waiting to hear back from them on their plans for addressing since January as we’d like to upgrade the 512/128kbps ADSL link we use here. (Anyone noticed this site tends to load up a bit slow? That 128kbps figure is the reason why.)

We’ve been with this ISP since 1996. That’s quite a long innings… We’ve stayed put because until now we’ve been happy with the service. 512kbps was quite fast when we upgraded from 56kbps PSTN dialup (14.4kbps dialup when we first started… still have that modem too!). These days it plods along, but the 128kbps uplink is a notable thorn in my side with my telecommuting. So we’re looking at ADSL2+.

However, there’s one hitch. iTel is only a fairly small ISP. At the moment they do the noble thing of providing static public addresses on IPv4 for all fixed-broadband customers, but how long will that last? The last thing I want, is to sign up a contract for 12 months, then find out that in 6 months they need to move us behind CGN (Carrier grade NAT) to squeeze in some more customers. That won’t fly for us. I’d ideally like to ditch the 6-in-4 tunnel I have with AARNet and go native, or at the very least, swap it with one terminated at the ISP, but that doesn’t seem to be happening anytime soon.

At the moment there is only one ISP I know of that offers any sort of IPv6 connectivity. Internode. Kudos to them for taking the pioneering step! I’m seriously looking in their direction. I’m also hoping the NBN that we keep hearing about, is IPv6 enabled… and I’m holding out with the hope that our little suburb might soon be getting the long strands of glass laid down our street. If it’s only another year or so, it may be worth just hanging on with ADSL1 until then.

Thankfully, we do have the 6-in-4 tunnel through AARNet (and my greatest gratitude to them for providing it). There is a growing community on this newer protocol… I’m also happy to report absolutely 0 spam via IPv6… any spam or malware thus far has been via IPv4 … although I know this won’t last. The good news there is that with one unique address per computer (instead of per customer, or worse, per 100+ customers), it should be easier to track down the guilty party causing such Internet shenanigans. CGN by comparison is likely to be a spammer’s playground.

What am I doing about IPv6 deployment? Aside from my small-time tinkering with the network here… any socket programming I do today is at the very least dual-stack. One of my hobby projects is a digital mode stack for amateur radio… if I get my way it’ll be IPv6-only when used on a computer network.

One of my work projects involves interfacing some proprietary software to some power meters using RS-232 and RS-485 to Ethernet bridging devices. Even though the devices themselves are IPv4 only (and will be for the foreseeable future), I’m designing the software to handle IPv6. Doing this, future proofs the software. Surprisingly, I’m finding it easier to just design for dual-stack than it is to develop a IPv4-only application. If you’re building an application today, dual-stack IMHO must be part of the strategy if the application is going to work beyond this decade.

Some have asked about IPv6 on packet… sadly AX.25 packet does not go anywhere near fast enough to make IPv6 (or indeed, IPv4) networking a viable option on packet radio using existing TNCs… however I think IPv6 will, and should, play a much bigger part in amateur radio communications than it presently does… we can’t expect to hold on to the 44.0.0.0/8 subnet for much longer.

To the ISPs that are lagging behind, I say get moving! IPv4 is older than I am! This is especially true of the smaller ISPs… if you don’t move, you will get squeezed out of the future Internet connection market as address space gets consumed. To the nay-sayers who keep telling us that something else will replace IPv4, to you I say get moving… you haven’t got long to invent this magical silver bullet, in fact I say you’ve left it too late.

May 162011
 

This weekend just gone I was at Imbil helping out with the International Rally of Queensland, reporting scores for the car rally there.  This was my first look at packet radio in action.  Prior to this I had enabled the amateur radio options in the kernels I built, but never tried actually hooking radio to computer.  I shall be posting some notes on how I got this working…

zhouman ~ # uname -a
Linux zhouman 2.6.35.7-lm2f-nb #2 Wed Oct 13 00:42:58 EST 2010 mips64 ICT Loongson-2 V0.3 FPU V0.1 lemote-yeeloong-2f-8.9inches GNU/Linux
zhouman ~ # ifconfig sm0
sm0 Link encap:AMPR AX.25 HWaddr VK4MSL
inet addr:172.31.32.1 Bcast:172.31.32.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:256 Metric:1
RX packets:365 errors:0 dropped:0 overruns:0 frame:0
TX packets:36 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10
RX bytes:24236 (23.6 KiB) TX bytes:6850 (6.6 KiB)

zhouman ~ # mheard
Callsign Port Packets Last Heard
VK4EA-9 sm0 6 Mon May 16 17:59:12
VK4NRL-9 sm0 1 Mon May 16 17:58:40
VK4VP-1 sm0 8 Mon May 16 17:58:38
VK4RAI-3 sm0 9 Mon May 16 17:57:58
VK4TIM-9 sm0 14 Mon May 16 17:57:56
VK4TDI-1 sm0 2 Mon May 16 17:57:39
VK4DC-1 sm0 15 Mon May 16 17:57:07
VK4TEC-9 sm0 120 Mon May 16 17:56:08
VK4FY-1 sm0 18 Mon May 16 17:54:38
VK4RMO-3 sm0 1 Mon May 16 17:54:33
VK4RGC-3 sm0 3 Mon May 16 17:52:48
VK4RC-1 sm0 8 Mon May 16 17:51:29
VK4FIL-1 sm0 4 Mon May 16 17:46:44
VK4RIL-13 sm0 4 Mon May 16 17:45:43
VK4RBR-3 sm0 5 Mon May 16 17:42:59
VK2RDO-3 sm0 2 Mon May 16 17:41:19
VK4RRC-13 sm0 3 Mon May 16 17:36:39
VK2JUB-1 sm0 2 Mon May 16 17:34:44
VK4BNQ-1 sm0 1 Mon May 16 17:26:58
VK4LDA-9 sm0 2 Mon May 16 17:24:59
VK2POO-9 sm0 9 Mon May 16 17:21:24
VK2XFL-9 sm0 1 Mon May 16 17:21:09
VK4RSR-3 sm0 1 Mon May 16 17:20:04
VK4IE sm0 1 Mon May 16 17:15:04
VK4ALJ-3 sm0 1 Mon May 16 17:15:00
VK4HPW-9 sm0 5 Mon May 16 17:13:23
zhouman ~ #

Set-up consisted of:
Linux kernel on Lemote Yeeloong, latest soundmodem driver, Yaesu FT-897D, homebrew interface cable plugged into Yeeloong’s onboard sound card, USB serial driving BC547 in interface cable for PTT.

zhouman ~ # cat /etc/ax25/soundmodem.conf
<?xml version="1.0"?>
<modem>
<configuration name="FT897-D">
<chaccess txdelay="150" slottime="100" ppersist="40" fulldup="0" txtail="10"/>
<audio type="alsa" device="plughw:0,0" halfdup="0" capturechannelmode="Mono"/>
<ptt file="/dev/ttyUSB0"/>
<channel name="Channel 0">
<mod mode="afsk" bps="1200" f0="1200" f1="2200" diffenc="1"/>
<demod mode="afsk" bps="1200" f0="1200" f1="2200" diffdec="1"/>
<pkt mode="MKISS" ifname="sm0" hwaddr="VK4MSL" ip="172.31.32.1" netmask="255.255.255.0" broadcast="172.31.32.255"/>
</channel>
</configuration>
</modem>
zhouman ~ #

I’ve shut it down for now, but I’ll give it a bit more work on 145.175MHz tomorrow. Once I get something working, I might set something up using the O2 or one of the Fulongs (probably the latter) and see about getting soundmodem back into Gentoo.

Update: After hand-editing the ebuild to enable APRS support, I can successfully report that not only is soundmodem working, but so is Xastir on my Yeeloong, as can be seen on aprs.fi.