Mar 312018
 

So last post, I mentioned about the installation of the new battery charger, which is fed from 240V mains. Over the last few days this charger has held the batteries at a rock-solid 14.4V. Not once did the batteries drop below that voltage setpoint.

So good in fact, the solar charger does no work at all.

By the way, this is what the install looks like. I promised pictures last post.

That’s the DC end … and the nasty AC end is all sealed up…

I will eventually move this to a spot on the back of the rack, but it can sit here for now.

Ultimately, the proper fix to this will be to have the mains-powered charger power off when the sun is up. On the DC output connector, the two rightmost screw terminals go to an opto-isolator that, when powered, shuts off the charger, putting it into stand-by mode. This was one of the reasons I bought this particular unit. The other was the wide range of voltage adjustment.

The question is when to turn on, and when to go to stand-by. Basically if the following expression is true, then turn off the mains:

(V_{batt} > 12.8) \\wedge (V_{solar} > 15)

We do not want solar if the battery is very low, as there’s a possibility that the solar output will not be sufficient.  Likewise, if the sun’s out, we need the mains to keep the battery topped up.

The solar output is nearly always above 15V when the sun is up, so there’s our first clue.  We can safely get to 12.8V before things start going pear shaped on the cluster, so we can use that as our low-voltage safety net.  If both of these conditions are met, then it’s safe to turn off the mains power and rely on solar only.

We need a +5V signal when both these conditions are met.  This very much sounds like the job of a dual-comparator with diode-OR outputs pulling on a 5V pull-up.  Maybe a wee bit of hysteresis on those to prevent flapping, and we should be good.

Unfortunately, to do that, I need to unscrew terminals to feed some wires in.  I don’t feel like doing that just now… we’re packing up to go away for a while, and I think this sort of job can wait until we return.

In the meantime, I’ve done something of a hack.  I mentioned the PSU is adjustable.  I wound Vfloat back to 12V… thus Vboost has gone to 12.8V.  Right now, the mains PSU is showing a green LED, meaning it is in floating mode.

We have good sun right now, and the solar controller is currently boosting the battery.  When the battery gets low, the charging circuitry of the mains PSU should kick in, and bring the battery voltage up, holding it at 12.8V until the sun comes up.  I’ll leave it for now and see how this hack goes.

On other news… I might need to re-consider my NTP server arrangements.  I’m not sure if it’s a quirk of OpenBSD, or of the network here, but it seems OpenNTPD struggles to keep good time.  Never tried using the Advantech PC as a NTP server until now, and I’m also experimenting with using my VPS at Vultr as a NTP server.

http://www.pool.ntp.org/user/Redhatter

Both are drifting like crazy.  I have a GPS module lying around that I might consider hooking up to the TS-7670… perhaps make it a Stratum 1 NTP server on the NTP server pool, then the Advantech can sync to that.

This won’t help the VPS though, and I’m at a loss to explain why a Geode LX800 running on an ADSL link in my laundry, outperforms a VPS in a nicely climate-controlled data centre with gigabit Internet.

But at least now that’s one less job for my aging server.  I’ve also moved mail server duties off the old box onto a VM, so I’ll be looking at the BIOS settings there to see if I can get the box to wake up some time in the evening, let cron run the back-up jobs, then power the whole lot back down again, save some juice.

Oct 222017
 

So I’ve now had the solar panels up for a month now… and so far, we’ve had a run of very overcast or wet days.

Figures… and we thought this was the “sunshine state”?

I still haven’t done the automatic switching, so right now the mains power supply powers the relay that switches solar to mains.  Thus the only time my cluster runs from solar is when either I switch off the mains power supply manually, or if there’s a power interruption.

The latter has not yet happened… mains electricity supply here is pretty good in this part of Brisbane, the only time I recall losing it for an extended period of time was back in 2008, and that was pretty exceptional circumstances that caused it.

That said, the political football of energy costs is being kicked around, and you can bet they’ll screw something up, even if for now we are better off this side of the Tweed river.

A few weeks back, with predictions of a sunny day, I tried switching off the mains PSU in the early morning and letting the system run off the solar.  I don’t have any battery voltage logging or current logging as yet, but the system went fine during the day.  That evening, I turned the mains back on… but the charger, a Redarc BCDC1225, seemingly didn’t get that memo.  It merrily let both batteries drain out completely.

The IPMI BMCs complained bitterly about the sinking 12V rail at about 2AM when I was sound asleep.  Luckily, I was due to get up at 4AM that day.  When I tried checking a few things on the Internet, I first noticed I didn’t have a link to the Internet.  Look up at the switch in my room and saw the link LED for the cluster was out.

At that point, some choice words were quietly muttered, and I wandered downstairs with multimeter in hand to investigate.  The batteries had been drained to 4.5V!!!

I immediately performed some load-shedding (ripped out all the nodes’ power leads) and power-cycled the mains PSU.  That woke the charger up from its slumber, and after about 30 seconds, there was enough power to bring the two Ethernet switches in the rack online.  I let the voltage rise a little more, then gradually started re-connecting power to the nodes, each one coming up as it was plugged in.

The virtual machine instances I had running outside OpenNebula came up just fine without any interaction from me, but  it seems OpenNebula didn’t see it fit to re-start the VMs it was responsible for.  Not sure if that is a misconfiguration, or if I need to look at an alternate solution.

Truth be told, I’m not a fan of libvirt either… overly complicated for starting QEMU VMs.  I might DIY a solution here as there’s lots of things that QEMU can do which libvirt ignores or makes more difficult than it should be.

Anyway… since that fateful night, I have on two occasions run the cluster from solar without incident.  On the off-chance though, I have an alternate charger which I might install at some point.  The downside is it doesn’t boost the 12V input like the other one, so I’d be back to using that Xantrex charger to charge from mains power.

Already, I’m thinking about the criteria for selecting a power source.  It would appear there are a few approaches I can take, I can either purely look at the voltages seen at the solar input and on the battery, or I can look at current flow.

Voltage wise, I tried measuring the solar panel output whilst running the cluster today.  In broad daylight, I get 19V off the panels, and at dusk it’s about 16V.

Judging from that, having the solar “turn on” at 18V and “turn off” at 15V seems logical.  Using the comparator approach, I’d need to set a reference of 16.5V and tweak the hysteresis to give me a ±3V swing.

However, this ignores how much energy is actually being produced from solar in relation to how much is being consumed.  It is possible for a day to start off sunny, then for the weather to cloud over.  Solar voltage in that case might be sitting at the 16V mentioned.

If the current is too low though, the cluster will drain more power out than is going in, and this will result in the exact conditions I had a few weeks ago: a flat battery bank.  Thus I’m thinking of incorporating current shunts both on the “input” to the battery bank, and to the “output”.  If output is greater than input, we need mains power.

There’s plenty of literature about interfacing to current shunts.  I’ll have to do some research, but immediately I’m thinking an op-amp running from the battery configured as a non-inverting DC gain block with the inputs going to either side of the current shunt.

Combining the approaches is attractive.  So turn on when solar exceeds 18V, turn off when battery output current exceeds battery input current.  A dual op-amp, a dual comparator, two current shunts, a R-S flip-flop and a P-MOSFET for switching the relay, and no hysteresis calculations needed.

Sep 172017
 

So we’ve got a free weekend where there’ll be two of us to do a solar installation… thus the parts have now been ordered for that installation.

First priority will be to get the panels onto the roof and bring the feed back to where the cluster lives.  The power will come from 3 12V 120W solar panels that will be mounted on the roof over the back deck.  Theoretically these can push about 7A of current with a voltage of 17.6V.

We’ve got similar panels to these on the roof of a caravan, those ones give us about 6A of current when there’s bright sunlight.  The cluster when going flat-chat needs about 10A to run, so with three panels in broad daylight, we should be able to run the cluster and provide about 8A to top batteries up with.

We’ll be running individual feeds of 8-gauge DC cable from each panel down to a fused junction box under the roof on the back deck.  From there, it’ll be 6-gauge DC cable down to the cluster’s charge controller.

Now, we have a relay that switches between mains-sourced DC and the solar, and right now it’s hard-wired to be on when the mains supply is switched on.

I’m thinking that the simplest solution for now will be to use a comparator with some hysteresis.  That is, an analogue circuit.  When the solar voltage is greater than the switchmode DC power supply, we use solar.  We’ll need the hysteresis to ensure the relay doesn’t chatter when the solar voltage gets near the threshold.

The other factor here is that the solar voltage may get as high as 22V or so, thus resistor dividers will be needed both sides to ensure the inputs to the comparator are within safe limits.

The current consumption of this will be minimal, so a LM7809 will probably do the trick for DC power regulation to power the LM311.  If I divide all inputs by 3, 22V becomes ~7.3V, giving us plenty of head room.

I can then use the built-in NPN to drive a P-channel MOSFET that controls the relay.  The relay would connect between MOSFET drain and 0V, with the MOSFET source connecting to the switchmode PSU (this is where the relay connects now).

The solar controller also connects its control line to the MOSFET drain.  To it, the MOSFET represents the ignition switch on a vehicle, starting the engine would connect 12V to the relay and the solar controller control input, connecting the controller’s DC input to the vehicle battery and telling the controller to boost this voltage up for battery charging purposes.

By hooking it up in this manner, and tuning the hysteresis on the comparator, we should be able to handle automatic switch-over between mains power and solar with the minimum of components.