Sep 272018
 

So, the last few days it’s been overcast.  Monday I had a firmware glitch that caused the mains supply to be brought in almost constantly, so I’d disregard that result.

Basically, the moment the battery dropped below ~12.8V for even a brief second, the mains got brought in.  We were just teetering on the edge of 12.8V all day.  I realised that I really did need a delay on firing off the timer, so I’ve re-worked the logic:

  • If battery drops below V_L, start a 1-hour timer
  • If battery rises above V_L, reset the 1-hour timer
  • If the battery drops below V_CL or the timer expires, turn on the mains charger

That got me better results.  It means V_CL can be quite low, without endangering the battery supply, and V_L can be at 12.8V where it basically ensures that the battery is at a good level for everything to operate.

I managed to get through most of Tuesday until about 4PM, there was a bit of a hump which I think was the solar controller trying to extract some power from the panels.  I really need a good sunny day like the previous week to test properly.

This is leading me to consider my monitoring device.  At the moment, it just monitors voltage (crudely) and controls the logic-level enable input on the mains charger.  Nothing more.  It has done that well.

A thought is that maybe I should re-build this as a Modbus-enabled energy meter with control.  This idea has evolved a bit, enough to be its own project actually.  The thought I have now is a more modular design.

If I take the INA219B and a surface-mount current shunt, I have a means to accurately measure input voltage and current.  Two of these, and I can measure the board’s output too.  Stick a small microcontroller in between, some MOSFETs and other parts, and I can have a switchmode power supply module which can report on its input and output power and vary the PWM of the power supply to achieve any desired input or output voltage or current.

The MCU could be the ATTiny24As I’m using, or a ATTiny861.  The latter is attractive as it can do high-speed PWM, but I’m not sure that’s necessary in this application, and I have loads of SOIC ATTiny24As.  (Then again, I also have loads of PDIP ATTiny861s.)

The board would expose the ICSP pins plus two more for interrupt and chip select, allowing for a simple jig for reprogramming.  I haven’t decided on a topology yet, but the split-pi is looking attractive.  I might start with a buck converter first though.

This would talk to a “master” microcontroller which would provide the UI and Modbus interface.  If the brains of the PSU MCU aren’t sufficient, this could do the more grunty calculations too.

This would allow me to swap out the PSU boards to try out different designs.

Sep 232018
 

Well, I’ve now had the controller working for a week or so now… the solar output has never been quite what I’d call, “great”, but it seems it’s really been on the underwhelming side.

One of the problems I had earlier before moving to this particular charger was that the Redarc wouldn’t reliably switch between boosting from 12V to MPPT from solar.  It would get “stuck” and not do anything.  Coupled with the fact that there’s no discharge protection, and well, the results were not a delight to the olfactory nerves at 2AM on a Sunday morning!

It did okay as a MPPT charger, but I needed both functions.  Since the thinking was I could put a SSR between the 12V PSU and the Redarc charger, we tried going the route of buying the Powertech MP3735 solar charge controller to handle the solar side.

When it wants to work, it can put over 14A in.  The system can run on solar exclusively.  But it’s as if the solar controller “hesitates”.

I thought maybe the other charger was confusing it, but having now set up a little controller to “turn off” the other charger, I think I can safely put that theory to bed.  This was the battery voltage yesterday, where there was pretty decent sunshine.

There’s an odd blip at about 5:40AM, I don’t know what that is, but the mains charger drops its output by a fraction for about 50 seconds.  At 6:37AM, the solar voltage rises above 14V and the little ATTiny24A decides to turn off the mains charger.

The spikes indicate that something is active, but it’s intermittent.  Ultimately, the voltage winds up slipping below the low voltage threshold at 11:29AM and the mains charger is brought in to give the batteries a boost.  I actually made a decision to tweak the thresholds to make things a little less fussy and to reduce the boost time to 30 minutes.

The charge controller re-booted and turned off the mains charger at that point, and left it off until sunset, but the solar controller really didn’t get off its butt to keep the voltages up.

At the moment, the single 120W panel and 20A controller on my father’s car is outperforming my 3-panel set-up by a big margin!

Today, no changes to the hardware or firmware, but still a similar story:

The battery must’ve been sitting just on the threshold, which tripped the charger for the 30 minutes I configured yesterday.  It was pretty much sunny all day, but just look at that moving average trend!  It’s barely keeping up.

A bit of searching suggests this is not a reliable piece of kit, with one thread in particular suggesting that this is not MPPT at all, and many people having problems.

Now, I could roll the dice and buy another.

I could throw another panel on the roof and see if that helps, we’re considering doing that actually, and may do so regardless of whether I fix this problem or not.

There’s several MPPT charger projects on this very site.  DIY is a real possibility.  A thought in the back of my mind is to rip the Powertech MP3735 apart and re-purpose its guts, and make it a real MPPT charger.

Perhaps one with Modbus RTU/RS-485 reporting so that I can poll it from the battery monitor computer and plot graphs up like I’m doing now for the battery voltage itself.  There’s a real empty spot for 12V DC energy meters that speak Modbus.

If I want a 240V mains energy meter, I only have to poke my head into the office of one of my colleagues (who works for the sister company selling this sort of kit) and I could pick up a little CET PMC-220 which with the addition of some terminating resistors (or just run comms at 4800 baud), work just fine.  Soon as you want DC, yeah, sure there’s some for solar set-ups that do 300V DC, but not humble 12V DC.

Mains energy meters often have extra features like digital inputs/outputs, so this could replace my little charge controller too.  This would be a separate project.

But that would leave me without a solar controller, which is not ideal, and I need to shut everything down before I can extract the existing one.  So for now, I’ve left the Powertech one in-place, disconnected its solar input so that now it just works as a glorified VSR and voltmeter/ammeter, as that bit works fine.

The Redarc is now hooked up to solar, with its output going into a spare socket going to the batteries.  This will cost me nothing to see if it’s the solar controller or not.  If it is, then I think some money on a VSR to provide the low-voltage protection, and re-instating the Redarc charger for solar duty will be the next step.  Then I can tear down the Powertech one at my leisure and figure out what they did wrong, or if it can be re-programmed.

The Meanwell charger is taking care of things as I type this, but tomorrow morning, we should hopefully see the solar set-up actually do some work…

… maybe. 🙂