Oct 062018
 

So, I’ve designed the sensor board, this is basically a break-out of an INA219 coupled with a PCA9615, for extended I²C range.  If I was to use one of these on the cluster, it’s theoretically possible for me to put one up in the fuse box on the back deck, and run CAT5e down to the server rack to help measure voltage drop across that long run.  Doing that with regular I²C would be insane.

Again, I’ve gone crazy with pull-up, pull-down and termination resistances, not knowing what would be needed.  The schematic is nothing special.

The board wound up bigger than I’d expected, but largely because it had to accommodate fairly heavy power traces.  I think I’ve got the footprint for the screw terminal blocks right.  I’ve managed to cram it onto a 5cm×5cm board (two layer).

As always, you’ve got two ways of dealing with the current shunt, either hook one up externally, which means you don’t bother with the beefy power connection footprints, or you fit a surface-mount shunt on.

You’ve got full flexibility there, as well as what address to set the board to via the jumpers.

I’ll probably order some of the connectors and other parts in question, print out the board layout and test-fit everything.  I’m not happy about the fact that NXP only make the PCA9615 in TSSOP, but I guess I should be thankful the part has legs.

Sep 222018
 

So, I’ve gotten back to this project having spent a lot of my time on work, the Yarraman to Wulkuraka bike ride and the charging controller #Solar-powered cloud computing — just to name 3 things vying for my attention.

In the test board, I had wired up some LEDs for debugging, dead-bugged 0805s, which were hooked between the output of the octal latch and 0V.  I omitted the series resistor, as I presumed that, given the output was PWMed with a maximum duty cycle of ⅛, the LEDs shouldn’t burn out.

Turns out I had forgotten a property that all diodes exhibit, that is the desire to clamp the voltage across them.  Today I was testing the board, and wondering why some channels were dim, others didn’t work at all, but one worked so much better.  Did I accidentally put the wrong current limiting resistor in series with the drain?  No, all checked out as about 12 ohms.

I put a program on the MCU that just turned a channel on when the button was pressed.  No music, no fancy PWM stuff, just turn on a LED when the corresponding button was pressed.  Measuring the gate voltage showed about 2V.

Even with the PWM output forced low, the output was still 2V.  Moreover, I was using my new bench supply, and with nothing running, the circuit was drawing ~300mA!  Why?

Turns out, the LEDs I had dead-bugged in, were trying, and succeeding, in clamping the output voltage.  2V was just barely enough to trigger the output MOSFETs, but clearly this was borderline as some worked better than others.  I was likely in the linear region.

Snip out the common connection for the LEDs to 0V, and the problems disappeared.  I’ve dead-bugged a 1kOhm resistor in series with the lot, and that’s got my debug LEDs back and working again.  The MOSFET outputs now work properly.

The bigger chunkier MOSFETs I bought by mistake could have worked just fine: maybe I was just driving them wrong!

Two prospects have crossed my mind:

  • Getting the MOSFET board made professionally
  • Getting a board that combines all components onto one PCB made professionally

The version that is shown was really designed for the home PCB maker to be able to produce.  The traces are wide and the board is fundamentally single-sided: when etching, you just etch one side of the board and leave the other side unetched.  When drilling the holes, you just countersink the holes a bit on all pins not connected to 0V.

A smaller board with everything in one would be worth making now that I’ve proven the concept.  Not sure there’s a good reason to go to SMT at this stage: I still want to make assembly simple.  The thinking is the all-in-one would have some headers so you can conceivably break things out for other projects and just omit parts as required.

This could theoretically be entered into the #The 2018 Hackaday Prize as part of the musical instrument contest, as that’s what it is: it’s a musical instrument for the severely physically handicapped.  There is a video of a slightly earlier prototype in this post .

Code wise, I’ve done little.  The basic functionality is there, it makes noises, it flashes LEDs, that’s about what it needs to do for now.  I did have to increase the start-up delay so that the buttons were detected properly, as without this, if I used my bench-top supply, it would fail to see any inputs.  People aren’t going to notice 100ms boot-up delay vs 1ms, but it makes a difference if the power supply is a little slow.

Sep 302016
 

So a few weeks ago, I gave the charge controller a test, seeing if it in fact reacted in the manner I expected before deciding whether to proceed with the existing prototype or whether I should iterate the design.

In the end, I decided I’d tweak the design and get new boards built. By using SMD parts and a 4-layer board, I was able to shrink my design down to a 5×5cm square, which is relatively inexpensive to have fabricated.

I’ll be getting a few boards which means I can have some spares in case something goes bang or if I want to scale out my battery bank.

The updated design is published in the files section. This also incorporates @K.C. Lee‘s advice regarding back-to-back MOSFETs.

After some fun and games, one PCB fab house telling me to “check my passwords match” (when I know for certain that they did match), and another seemingly ignoring the inner two layers, I settled on a PCB manufacturer (thanks to PCBShopper) and got the boards ordered.

I put down my home address for the billing address and my work address as the delivery address. Both given as being in “Queensland, Australia”.

This is a learning experience for me, I’m used to just drawing my circuit out with a dalo pen, but unfortunately my skills aren’t up to producing a board for SOICs.

They reported that they shipped the boards on the 21st, and had previously estimated about 2-3 weeks for delivery. No problem there.

Just one niggling concern…

Not familiar with Swiss Post procedures, I’d have expected it to show Hong Kong → Australia, but maybe that’s how they do things. I do hope someone didn’t get Queensland, Australia mixed up with Quebec, Canada!

Update: Just been in touch, no the manufacturer didn’t get it mixed up, and it’s the right tracking number. They’re chasing it up with Swiss Post.