yaesu-ft857d

New project: a replacement head unit for the Yaesu FT-857(D)

So, for a long while now I’ve been a user of a Yaesu FT-857D. I bought it back in 2011 as shop-soiled stock (someone bought it before me thinking they could make it work on 27MHz!) and have used it on the bicycle pretty much ever since.

The FT-857D is a great rig. Capable of all common amateur bands from 160m through to 70cm, 100W on MF/HF/6m, 50W on 2m, 20W on 70cm, and able to work AM/FM/SSB/CW, in a nice small package. It’s ideal for the bike in that regard. The only thing I could wish for is an actually waterproof head unit, but the stock one has been good, until now.

Last time I rode the bike I had no issues with the head unit display, things were stable and working just fine. That was some months back. Today fired it up to check the battery voltage: it seems I’ve got the dreadded zebra stripe issue. The bike has been in the garage for the past few months, so under cover, not in the sun… anecdotal evidence is that this problem is caused by vibration/heat in vehicle installations, but some reports suggest this can happen for indoor fixed installations too.

The problem

Either way, the zebra has made its home in my radio’s head unit and the display is now pretty much unreadable. Reports suggest I can send it back to Yaesu, pay them $200 (I presume that’s USD, and does not include shipping), and they will replace the defective LCD. However… given they discontinued making these things a few years back, I think I’ve missed the boat on that one!

Time for replacement?

Buying a new replacement isn’t viable right now — Yaesu don’t make anything equivalent: the FT-991A is too big (same size as the FT-897D), the FT-891 doesn’t do 2m/70cm, the FT-818ND is only QRP. Icom’s IC-7100 is the nearest competitor, not out of the question, except it’s a pricey unit for something that will be out in the weather.

Also, a lot of these options are out-of-stock with a big lead time.

Most of the Chinese units only do FM, and are at best quad-banders. Not that I’m interested in buying one: I hear they’re not the longest-lived of transceivers and right now I wish to avoid buying from China anyway.

Kenwood are basically out of the market here in Australia, and they never had an offering like the Icom or Yaesu units; their TS-480SAT was the closest, but does not cover 2m/70cm. The TS-2000 is a monster.

Alinco don’t have anything in a mobile format that competes either. The DX-SR9T does not cover 2m/70cm and is rather big; none of their 2m/70cm sets do HF or SSB.

Keeping the old faithful going

The radio itself works fine. It looks like the wreck of the Hesperus… with paintwork rubbed off the body, screws missing, a DIY fix on the antenna ports, and miscellaneous fixes to other bits. It still works though.

DIY Repair

This could be tricky as I’m not entirely sure what the issue is. It could be just a need for re-flowing everything, or there’s talk of parts needing replacement. The information I have is pretty murky and I could wind up making my partially-working head unit completely non-working.

Replacement used head unit

If someone had a working head unit that they were willing to part with, that might be an option. That said, the used unit could have the same problems my existing unit has, so no guarantee it’ll fix the problem.

CAT port auxiliary display

There are projects that link to the CAT port and present a UI on a separate screen. I was planning on putting a Raspberry Pi 4 there for SDR work, so that’s an option.

Homebrew head unit

Another option is to make a new front head unit. It turns out this has been partially reverse-engineered, so might be a worthy avenue to consider. That would give me a head unit that I can purpose-build for the bike: an attractive option. The hardware interface is 5V TTL UART with a 62kbps baud rate and 8-bits, no parity, two stop bits.

I have a big LCD (128×64) that has been kicking around for a while as well as some TFT resistive touchscreen displays with STM32F103VEs.

The Raspberry Pi 4 scraping the data and presenting it via a remote UI is also an option, in fact may be the direction I wind up going simply because Python on an ARM CPU is much easier to use prototyping something than doing C on a MCU whilst I bed down the finer details of the protocol.

The attraction of this is that I can use what I have on-hand now. Possibly use my tablet as the front-end in the short term. Not good in the rain, but can’t argue with the price!

I’ll go ponder this some more… one thing I am short of though is time to work on this stuff. This week-end is through, and the next one I’ll already be tied up on the Saturday, so I guess I’ll have to squeeze something in.

VK4MSL/BM Mk3

Over the last year or so, I’ve done a number of improvements to the bicycle mobile station.  I’ve kept meaning to document what’s happened, as a number of people have asked about the station, and not everyone gets to see it up close.

A big move was when the FT-290RII 25W PA died, I was using the FT-897D a lot, and that thing is a heavy lump of a radio to lug around.  So I bought its smaller sister, the FT-857D with its remote head kit.

A second move was from the heavy 40Ah battery pack to a much lighter 10Ah pack.  Then, in July last year, I bought myself a new pair of wheels.  The ’09 model Boulder pictured earlier still gets regular use and is good on the road, but longer trips and on hills, it’s a drag, and the tyres are not good on dirt.

Thus I bought a Talon 29 ER 0… in contrast to the Boulder, this bike is designed with mountain-biking sports in mind, so a little heavier duty, better gearing and suspension.  Sadly not dual-suspension … they don’t seem to make one that will take a pannier rack on the back like I require.  Nonetheless, this one has been going well.

VK4MSL/BM Mk3: New and improved

VK4MSL/BM Mk3: New and improved

Rather than buying an open basket like I did on the other, I went one step further, I bought a motorcycle hard top-box and mounted that on the back.  Thus the FT-857D could live in there, sheltered from the weather.  I later also bought pannier bags: my battery, some tools, spare tubes, visors for the helmet, etc, live in one bag, my clothes live in the other.

The station is otherwise, not much different to how it was in concept.  The antennas now mount on opposite sides of the top box with right-angle aluminium.  I still have to work on grounding for the HF side but even then, the station still delivers respectable performance on 40m.

On my way to BARCfest this year, I was being heard S9+40dB in Newcastle with 60W PEP.  I’d have ran 100W, but due to the earthing problems, I found I was getting a bit too much RF feedback.

The 2m antenna is similar to previous ventures, just a 51cm length of RG-213 with the jacket and braid stripped off and a PL-259 plug soldered onto one end.  It’s a simple design that’s easy to make, easy to fix, cheap and can be constructed from readily available parts.  If you can make your own patch leads, you can make one of these.

VK4MSL/BM: 2m antenna. Just some RG-213 and a PL-259 connector is all you need

VK4MSL/BM: 2m antenna. Just some RG-213 and a PL-259 connector is all you need

70cm remains a work in progress.  In theory, a ¼λ antenna resonant at 144MHz should also resonate at 432MHz, as this is the ¾λ frequency.  In practice, this has been a pain to tune.  I basically just stick to 2m and leave it at that.

As for coupling the radio to the head unit… I could use the leads that Yaesu supplied.  One distinct disadvantage with this is that it ties me into using only compatible equipment.  The other is that the connectors are just not designed for constant plugging/unplugging, and the 6P6C and 8P8C connectors become unreliable very quickly if you do this.  A solution was to make up a patch lead to go onto each end, and to use some standard cable in the middle.

Initially I did this with a 25-pin printer cable, but found the RF problems were terrible!  Three lengths of CAT5e however, did the job nicely.  Yes, I sacrifice one pin, right in the middle.  24 pins is more than enough.  I allocate six pins on one end for the head unit cable; choosing the wires so that the connections are consistent at each end.

The other end, I have a standard convention for microphone/control cabling.  The balanced nature of the CAT5e works well for microphone cabling on a radio like the FT-857D which was designed with dynamic microphones in mind.

The only other connectors I need then are for power, and for lights.  Power I just use Anderson PowerPole type connectors, the 30A variety… and for lighting, I use ruggedised 6-pin automotive connectors.

VK4MSL/BM Mk3: Rear connections onto top box

VK4MSL/BM Mk3: Rear connections onto top box

At the handlebars, things have been refined a little… the switches and push buttons are in plastic boxes now.  Here I still have to work on the front basket mount, this compromise of a former broomstick handle hose-clamped to the handlebars is a workaround for the basket bracket’s inability to clamp around the rather thick handlebars.  This arrangement is fine until one of the hose clamps slips (which happens from time to time).

For now I put up with it.  The controls from the radio are now mostly on the left side… Since the rear gear shift and front brake are on the right-hand side, I do far more with my right hand than with my left.  Thus doing this, I free up my right hand to actually operate the bike and use my less-busy left hand to operate the radio.

VK4MSL/BM: Front handlebar controls

VK4MSL/BM: Front handlebar controls

I mentioned earlier about HF… the HF antenna should look familiar.  It’s actually the same one I’ve been using for a while now.  Most distant contact so far has been into the Cook Islands on 20m.  I’ve had successful contacts on 80m, 40m, 20m and 15m with this antenna.  10m and 6m are the two that elude me just now.

VK4MSL/BM Mk3: With the HF antenna

VK4MSL/BM Mk3: With the HF antenna

It is a little difficult to see the entire antenna.  I did try to pick the angle to show it best… but if you look above the tree, you’ll see the tip of it immediately above the top box.  Below is a close-up shot to give you an idea where to look.

VK4MSL/BM Mk3: Base of HF antenna

VK4MSL/BM Mk3: Base of HF antenna

One big advantage of the new set up, is that night-time visibility is much better than before.  On the front I have a LED strip which lights up the path maybe 2m ahead of the front wheel.  Not a strong light, but ticks a box… my main headlight is on the helmet — people frequently assume they’re being filmed by it.  On the rear however, is a different story:

VK4MSL/BM Mk3: All lit up

VK4MSL/BM Mk3: All lit up

It doesn’t look like much in the day time, but it is quite bright at night.  The back uses two LED strips mounted in behind the red plastic on the top box, and one can easily read a book in the light produced.  Looking in the rear vision mirrors at night, the red glow can be seen reflecting off objects for a good 100m or so.

On my TO-DO list, is to mount switches to operate the brake light (just above the callsign).  Options include reed switches, hydraulic switches in the brake lines, or strategic placement of micro-switches.  I’ll have to experiment.  The other electronics is in place.

As to the other bike?  It’s still around, in fact if you look at the photo of the VHF antenna, you can see it in the background… along side the trailer I use when I do my grocery shopping.

I’ve done away with the basket on it, and gotten a second mounting plate, so the same top box fits on the back of the other bike, along with the same pannier bags, and same front basket.  It has done about 2800km since I bought the Talon (mid July, 2012), the Talon itself has done 2617km.

Thus I’d estimate the Boulder is well and truly past the 10000km mark, probably closer to 11000km now.  It’s still the primary means of getting around, averaging close to 100km a week and with a heavy load.  Not bad for a bike that’s designed for a little recreational riding.